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Abstract1

We give closed form expressions for the mean and variance of response times under2

Ratcliff’s diffusion model (Ratcliff, 1978) if the simplifying assumption is made that3

there is no variability across trials in the parameters. The expressions given are4

more general than have so far been available in the literature. As an application, we5

demonstrate their use in method-of-moments estimator that addresses some of the6

weaknesses of the EZ method (Wagenmakers, van der Maas, & Grasman, 2007), and7

illustrate this with lexical decision data. We discuss further possible applications.8

Key words: reaction time/response time, stochastic processes, diffusion model,9

estimation, response time mean, response time variance10

1 Introduction11

Speeded two-alternative forced choice experiments are ubiquitous in cognitive12

psychology and neuroscience. Not surprisingly, the most advanced statistical13

models in mathematical psychology target these types of experiments. Se-14

quential sampling models are currently the most successful in capturing the15

statistical features of the data obtained in these experiments, and among these,16

one of the most prominent class of models are diffusion models (Ratcliff, 1978;17

Luce, 1986). In particular, sequential models are able to account for the speed-18

accuracy trade off that has been a major source of controversy in experimental19

psychology for decades (Wickelgren, 1977). Interpreting speed and accuracy20

data in terms of the parameters that steer the underlying processes is much21

more informative than the traditional analysis of either mean response times22

or percentages correct (Wagenmakers et al., 2007). It is therefore unfortunate23
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to see that the mathematical complexity of these models, as well as the com-1

putational load for fitting—even with todays computers, tends to discourage2

researchers from using them.3

To study the relationship between mean response time and response time4

variance predicted by this class of models, in a previous paper (Wagenmakers,5

Grasman, & Molenaar, 2005; see also Palmer, Huk, & Shadlen, 2005) we ob-6

tained closed form expressions for the mean and variance of a simplified, yet7

analytically tractable, special case of Ratcliff’s diffusion model.8

Subsequently, these equations suggested to us a way to alleviate the technical9

pain associated with fitting the model in practical data analysis. Subject to10

the simplifying assumptions under which they were derived, inversion of the11

equations provided us with a method-of-moments estimator for the parame-12

ters that only involves a direct transform of the mean response times (MRT ),13

the response time variances (VRT ), and the proportions of correct responses14

(Pc). Appropriately enough, we dubbed this method the “EZ method” (Wa-15

genmakers et al., 2007).16

A limitation of the equations and the EZ method however, is that the special17

case for which the equations are valid postulates that participants are unbi-18

ased with respect to either of the two response choices. In certain experiments,19

participants are in fact biased towards one or another response alternative—20

sometimes due to a participants’ response preference, sometimes due to ex-21

perimental manipulation (e.g., presenting 75% words and 25% nonwords in a22

lexical decision experiment). Although the equations derived in Wagenmakers23

et al. (2005) do cover a range of common experimental situations, they tell24

us little about these more general cases, as bias towards either alternative is25
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an integral part of the decision making process as conceptualized in Ratcliff’s1

model.2

Besides this limitation of the equations, their application in the EZ method3

has an additional weakness. Many experimental paradigms, such as for exam-4

ple the lexical decision paradigm, are comprised of two conditions (a ‘word’5

condition and a ‘nonword’ condition) in which correct and error responses play6

reversed roles. These conditions are therefore logically intertwined and the dif-7

fusion processes for each of these conditions logically must share parameters.8

The EZ method does not support such constraints, and handles each of these9

experimental conditions separately.10

The purpose of the present article is to find closed form expression of re-11

sponse time mean and variance for the more general case than considered in12

Wagenmakers et al. (2005), in which it is not presumed that the decision is13

unbiased with respect to the response alternatives. As a practical application14

of these new expressions, we consider their use in a parameter estimation pro-15

cedure that is in line with the EZ method, but removes the above mentioned16

weaknesses. We demonstrate its usefulness with a real data example.17

The EZ method is easy by virtue of the analytical invertibility of the equa-18

tions obtained in Wagenmakers et al. (2005). For the new equations it turns19

out not to be possible to derive closed form expressions for the parameters20

in terms of proportion correct, and RT-mean and RT-variance. To use the21

new equations for the purpose of estimation, one has to resort to numerical22

procedures. We demonstrate one such estimation procedure, and determine23

its effectiveness in simulations. Like the EZ method, this procedure produces24

method-of-moments estimates. The use of the equations is however not limited25
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to method-of-moments estimators as we argue in the last section of the paper.1

It should be noted that the implementation of the demonstrated procedure2

is much easier than the statistically more optimal estimation procedures pro-3

posed in the literature (e.g., Ratcliff & Tuerlinckx, 2002; Voss & Voss, 2008).4

More importantly, this estimation procedure is computationally much faster5

than other available procedures. This can be a major advantage, especially if6

response time data are to be analyzed on an individual basis; particularly when7

many individuals participate in a study, or when estimates constitute the ba-8

sis for online adjustments of an experiment. The use of a numerical procedure9

furthermore frees the algorithm from being specific to a single experimental10

design; with such an algorithm it becomes easy to build more extensive mod-11

els that use diffusion processes as building blocks for decisions in complex12

experimental designs, in which parameters are constrained across conditions13

or may be modeled as functions of covariates or design factors. This is only14

practically feasible when estimates are obtained quick enough; especially when15

various models have to be considered and compared.16

The structure of this paper is as follows: In the next section, we first give17

a general description of the diffusion model as proposed by Ratcliff (1978).18

In section 3 we derive expressions for mean and variance similar to those in19

(Wagenmakers et al., 2005) for a more general diffusion process. In section 420

we apply the derived expressions to the estimation of diffusion parameters in a21

similar, but more general, vein as the EZ method (Wagenmakers et al., 2007).22

We demonstrate the effectiveness of this use of the expressions in simulations,23

and apply them to real data obtained in a lexical decision paradigm. In the24

discussion we hint at other estimation methods in which the expressions can25

be used. In the appendix we provide pointers to software implementations that26
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Fig. 1. Illustration of the stochastic information accumulation process underlying

the decision component in the diffusion model for simple decisions.

we make available on the internet.1

2 Ratcliff’s diffusion model2

For a single decision, Ratcliff’s diffusion model can be conceived of as an in-3

formation accumulating process over a noisy channel. This process is modeled4

as the movements of a particle on the interval (0, a). Each of the boundaries5

of the interval is associated with one alternative (e.g., nonwords and words in6

a lexical decision task). The particle’s position X represents the evidence for7

one versus the other alternative. The initial position of the particle at time8

zero, denoted z, represents the bias towards either of the alternatives. The9

process is illustrated in Figure 1. The particle’s movements are assumed to be10

governed by the stochastic differential equation11

dX(t) = νdt+ s dW (t). (1)

The equation expresses that the momentary change in evidence follows a con-12

stant accumulation rate ν with added random disturbances. The random dis-13
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turbances, s dW (t), are zero-mean random increments with infinitesimal vari-1

ance s2dt. The infinitesimal variance ensures that the disturbances are small2

enough as to let the evidence X(t) vary almost always without sudden jumps3

over time, but is large enough to make the process behave erratically and ul-4

timately unpredictably. Once the process exceeds one of the boundaries, the5

accumulation halts, and the evidence is taken to be conclusive for one over6

the other alternative. The diffusion model can be related to sequential like-7

lihood ratio testing for optimal decision making under uncertainty (Bogacz,8

Brown, Moehlis, Holmes, & Cohen, 2006), and this was in fact the reason for9

the introduction of sequential sampling models (Stone, 1960).10

It is instructive to see how three parameters in the model affect the speed-11

accuracy tradeoff: The accumulation rate, or drift rate, ν controls the speed of12

the deterministic information accumulation. Clearly, the greater the absolute13

value of the drift rate, the more strongly the process is influenced by the14

deterministic part of (1), hence the more likely it is to exit the correct end15

of the interval, and the quicker the process reaches a decision. The boundary16

separation, controled by a, not only affects the likelihood of terminating at17

the correct end of the interval, but also affects the amount of time the decision18

process will take. The particle’s starting position is equally important to the19

likelihood of leaving the correct end of the interval, and the amount of time it20

takes to reach it: If the process starts close to a for instance, it will be more21

likely to exit through a before it can reach 0 than when it starts close to 0,22

and it will do so in a shorter amount of time.23

The drift rate reflects the relatedness between a probe (stimulus) presented24

to the subject and an item in her task related memory set—the goodness-of-25

match (Ratcliff, 1978, 1985; Ratcliff & McKoon, 1988; Ratcliff & Smith, 2004).26
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The drift rate is therefore determined by the properties of the probe and the1

quality of the memory set, and is difficult to control by the subject but strongly2

controlled by the experimenter. The boundary separation allows the subject3

to control the conservativeness of her evidence criterion (e.g., in response to4

task instruction). The starting point allows the decision to be biased towards5

one of the alternatives, which is a way for the subject to increase the response6

speed in the case that one alternative is to be expected more likely than7

another. Empirical validation for each of these interpretations was found by8

Voss, Rothermund, and Voss (2004).9

Because stimuli, their activation in memory, or both may vary across trials,10

Ratcliff’s model generalizes to multiple repeated decisions by allowing variabil-11

ity in the drift rate ν. In addition, in an extended version of the model, the12

starting point z is also allowed to vary across trials (Ratcliff, 1978; Ratcliff &13

McKoon, 1988). The drift rate is usually assumed to be normally distributed14

around ν with variance η2. The starting point on the other hand is usually15

assumed to be uniformly distributed in the range (z − sz/2, z + sz/2). Both16

these distributional assumptions are ad hoc and should be considered as first17

approximations to the true underlying distributions. Furthermore, the diffu-18

sion process only pertains to the decision process and not to the time needed19

to encode the stimulus and execute a response. This latter time, whose mean20

is denoted Ter, and decision time are assumed to be additive in the total21

response time (e.g., Luce, 1986). Ter is usually referred to as the (mean)22

non-decision component. The non-decision component is also allowed to vary23

randomly across trials. Its law is usually assumed to be uniform over the in-24

terval (Ter−sTer/2, Ter +sTer/2) as a first approximation to the true underlying25

distribution. Tuerlinckx (2004) proposes instead to use a normal distribution,26
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which is motivated by computational considerations. 2
1

3 Decision time mean and variance2

The important merit of the diffusion model for the decision process is not3

only its credible account of how information accumulates in the brain to trig-4

ger a decision, but is also its ability to provide an accurate description of, and5

explanation for, many phenomena observed in human and animal response6

times (Ratcliff & Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001; Ratcliff7

& Smith, 2004; Smith & Ratcliff, 2004; Bogacz et al., 2006; Gold & Shadlen,8

2007). One of these phenomena concerns the consistently found (linear) re-9

lation between the means of samples of response time observations and their10

standard deviation. The predictions made by the diffusion model about this11

relation were studied in Wagenmakers et al. (2005), where expressions for the12

first two central moments were derived for the case in which the across trial13

variabilities were assumed to be absent, and the starting point z was assumed14

to lie equidistant from the two decision boundaries. The latter assumption15

corresponds to unbiased decisions.16

In this section, we find closed form expressions for the central moments in the17

more general case in which it is not a priori assumed that the decision process18

is unbiased. As in Wagenmakers et al. (2005), we will still assume however19

that there is no across trial variability in any of the diffusion parameters (i.e.,20

sz = 0 and η2 = 0). We discuss two different cases: In the first case, we21

2 Assuming a normal instead of a uniform distribution allows to reduce the compu-

tational complexity of evaluating the density function that is implied by the diffusion

model because one integral can be carried out analytically.
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determine the mean and variance of the time that the process described by1

equation (1) exits the interval on either side—i.e., the cumulants of the correct2

and error decision times combined. In the second case we focus on the mean3

and variance of the time that the diffusion process exits through a particular4

interval—i.e., the cumulants of the correct or error decision time only.5

To put the derived expressions to some direct practical use, in the next section6

we apply them in a method-of-moments estimation procedure in line with the7

EZ method.8

In this section we switch to the terminology that is common in the literature9

on stochastic processes, and talk about a particle’s position and exit time10

rather than accumulated evidence and decision time.11

3.1 Moments of exit times irrespective of exit boundary12

As most of this case was already discussed in (Wagenmakers et al., 2005), we13

only briefly summarize the derivation here and quickly turn to the resulting14

expressions.15

The process in equation (1) is associated with a partial differential equation16

(PDE) that governs the evolution of the probability distribution of X(t) across17

time, given that the process started out from the point z:18

∂tp(x, t|z, 0) = ν ∂zp(x, t|z, 0) +
s2

2
∂2
zp(x, t|z, 0). (2)

This equation is known as the Kolmogorov backward equation. To be more19

precise, this is one form of the Kolmogorov backward equation of a time ho-20
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mogenous system. The Kolmogorov backward equation, as opposed to the as-1

sociated Kolmogorov forward or Fokker-Planck equation, is the usual starting2

point for considerations about the exit times of a diffusion process.3

We consider the exit time T for the process. Let G(t, z) = Prob(T > t) denote4

the probability that a process that started at z exits the interval after time t.5

Recall that the process is terminated as soon as it hits one of the boundaries;6

i.e., the boundaries are absorbing. Now, suppose the process exits the interval7

after time t, i.e., T > t. Then, because of the absorbing boundaries, the8

process must still be in the interval at time t (otherwise the process would9

have stopped earlier than, or at, time t, that is T ≤ t, which would contradict10

our assumption that T > t). Hence, if p(x, t|z, 0) is to be a valid function for11

the density of this process that is subject to absorbing boundaries, it must12

satisfy the equality13

G(t, z) =
∫ a

0
p(x, t|z, 0)dx,

in addition to satisfying the backward equation (2). The backward equation14

then implies that G satisfies15

∂tG(t, z) = ν ∂zG(t, z) +
s2

2
∂2
zG(t, z), (3)

with boundary conditions G(t, 0) = 0 = G(t, a) = 0, as both boundaries are16

absorbing (cf., Gardiner, 2004; Wagenmakers et al., 2005). The moments of17

the exit times are given by18

11



Tn(z) ≡ E{T n} =
∫ ∞
0

tn[∂t′P (T ≤ t′)]tdt

= −
∫ ∞
0

tn[∂t′G(t′, z)]tdt = n
∫ ∞
0

tn−1G(t, z)dt,

where the latter equality results from integration by parts. This equation can1

be applied in (3) to obtain the equation for the moments of the exit times:2

ν ∂zTn(z) +
s2

2
∂2
zTn(z) = −nTn−1(z). (4)

Note that the equation is recursive in the moment order n. Busemeyer and3

Townsend (1992) provide an alternative derivation of the analogous equation4

for the more general Ornstein-Uhlenbeck process.5

A general solution can be obtained by direct integration of (4) (see Gardiner,6

2004), but we shall not do so here—the result is analogous to the derivation7

of the mean an variance of the correct responses that is outlined in the next8

section. For the first and second order moments the equations turn out to be9

analytically solvable, which allows us to obtain expressions for the mean and10

variance of the exit times:11

E{T} = −z
ν

+
a

ν
Z/A, (5)

and12

12



Var(T ) =
−νa2(Z + 4)Z/A2 + ((−3νa2 + 4νza+ s2a)Z + 4νza)/A− s2z

ν3
,

(6)

where, A = exp{−2νa/s2} − 1, and Z = exp{−2νz/s2} − 1.1

As indicated, these equations are the moments of the exit times conditioned2

on the starting point, but irrespective of their point of exit. In response time3

terms: These are the first two cumulants of the response times of the ag-4

gregated correct and incorrect responses. We next consider the cumulants of5

the exit times given that the process exits through a particular end of the6

interval—i.e. of the responses conditioned on the correctness of the response.7

Approximate and some exact results for the discrete time random walk counter8

part of the diffusion model in this case were derived by (Schwartz, 1991).9

3.2 Mean and variance of exit times through the lower bound10

Before we proceed, consider again the Kolmogorov backward equation in (2)11

associated with the decision proces. As indicated before, this equation is asso-12

ciated with the Kolmogorov forward or Fokker-Planck equation, which reads13

∂tp(x, t|z, 0) = −ν ∂xp(x, t|z, 0) +
s2

2
∂2
xp(x, t|z, 0). (7)

This equation is in fact a completely equivalent, but slightly alternative spec-14

ification of the probability density p(x, t|z, t′). Both equations give rise to the15

same probability density function (Gardiner, 2004).16
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The forward equation can be written1

∂tp(x, t|z, 0) + ∂xj(x, t|z, 0) = 0,

where j(x, t|z, 0) = νp(x, t|z, 0) − s2

2
∂xp(x, t|z, 0). The function j(x, t; z, 0) is2

termed the probability current because mathematically, it behaves as a phys-3

ical current or flux (see Gardiner, 2004, sect. 5.2). The probability current4

describes how much of the probability per unit time flows through a particu-5

lar point x at time t, as the probability density p(x, t|z, 0) evolves over time.6

By convention, here the direction of flow is assumed to be pointing to the right.7

In particular, for the type of processes under consideration, −j(0, t|z, 0) and8

j(a, t|z, 0) measure the amount of probability that leaks away per unit time at9

the end points of the interval. Clearly then, the probability of a particle that10

started at z to leave the interval at the lower boundary after time t is11

g0(z, t) = −
∫ ∞
t

j(0, t′|z, 0)dt′ =
∫ ∞
t

(
− ν +

s2

2
∂x
)
p(x, t′ | z, 0)

∣∣∣
x=0

dt′

(cf. Gardiner, 2004), where the first equality expresses the total amount of12

probability that leaks through 0 after time t. Therefore, the probability that13

the exit time, T (0, z), of the particle is larger than t given that it exits through14

0 is15

P (T (0, z) > t) = g0(z, t)/g0(z, 0), (8)

Here, the notation T (0, z) emphasizes that the exit is through the lower bound-

ary 0 and depends on the starting point z of the particle. The change of total
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probability that the particle is inside the interval at time t is the total proba-

bility current that flows out of the interval at the boundaries

∂P (X(t) ∈ (0, a))

∂t
= j(a, t)− j(0, t)

where the minus sign arises because the current is taken to point to the right.1

By calculating the partials ∂tg0, ∂zg0, and ∂2
zg0, and using the backward equa-2

tion (2), it may be verified that g0(z, t) therefore satisfies the equation3

∂tg0(z, t) = j(0, t|z, 0) = ν ∂zg0(z, t) +
s2

2
∂2
zg0(z, t) (9)

As was the case for G(z, t) in the previous section, g0(z, t) gives rise to an4

equation for the moments of the exit times, given that the exit is at 0: The5

n-th order moment of T (z, 0), Tn(z, 0), is defined by6

Tn(z, 0) = −
∫ ∞
0

tn∂t′P (T (z, 0) > t′)|t dt = n
∫ ∞
0

tn−1g0(z, t)/g0(z, 0)dt,

where the second equality result from integration by parts.7

On the other hand, using the PDE for g0 above8

− g0(z, 0)Tn(z, 0) = ν ∂z

∫ ∞
0

tng0(z, t)dt +
s2

2
∂2
z

∫ ∞
0

tng0(z, t)dt

Combining these equations, and defining π0(z) = g0(z, 0), we obtain9

15



ν ∂z(π0(z)Tn(z, 0)) +
s2

2
∂2
z (π0(z)Tn(z, 0)) = −nπ0(z)Tn−1(z, 0). (10)

This equation recursively relates the moments of the exit times to each other,1

conditioned on the exit point 0. Note that the zero-th moment T0(z, 0) ≡ 1.2

It is clear that the boundary conditions for the solution π0(z)T (z, 0) are3

π0(a)T (a, 0) = π0(0)T (0, 0) = 0, (11)

which result directly from the boundary conditions of the backward Fokker-4

Planck equation in case of absorbing boundaries (the decision process termi-5

nates as soon as it hits one of the boundaries). Following Gardiner (2004, p.6

143), clearly T (0, 0) = 0, as a process starting at the boundary immediately7

terminates, and π0(a) = 0, as the chance that the process terminates at a if8

it started at the boundary 0 is zero.9

If t in (9) approaches 0, the equation reduces to an equation for g0(z, 0) =10

π0(z),11

ν ∂zπ0(z) +
s2

2
∂2
zπ0(z) = 0, (12)

which, together with the obvious boundary conditions π0(0) = 1 and π0(a) =12

0, gives rise to the equation for the probability of an error response given in13

Ratcliff (1978).14

We obtain the mean response time of the error responses by solving (10) for15

T1(z, 0), subject to the indicated boundary conditions. An alternative expres-16

16



sion was obtained in Palmer et al. (2005) using different methods. Note that1

T0(z, 0) ≡ 1. Introducing ϕ(x, y) = exp{2 ν y/s2}− exp{2 ν x/s2}, the solution2

is found by straightforward integration:3

T1(z, 0) =
z (ϕ(z− a, a) + ϕ(0, z)) + 2 a ϕ(z, 0)

ν ϕ(z, a)ϕ(−a, 0)
. (13)

The derivation of the expression for the second moment of the decision times4

is outlined in Appendix A. The variance is obtained by subtracting the square5

of the mean. Tedious simplifications yield6

Var(T (z, 0)) =
−2 aϕ(0, z)(2 ν aϕ(z, 2 a) + s2 ϕ(0, a)ϕ(z, a)) e2 νa/s

2

ν3 ϕ2(0, a)ϕ2(z, a)

+
4ν z (2 a− z) e2ν (z+a)/s2 + z s2 ϕ(2 z, 2 a)

ν3 ϕ2(z, a)
. (14)

To obtain the corresponding equations for the correct responses, use (ν, z) 7→7

(−ν, a− z).8

Unconditional versus conditional cumulants We note a couple of dif-9

ferences between the conditional and unconditional mean and variance. First,10

both mean and variance of the exit time conditioned on the point of exit11

converge to an asymptotic value as the starting point approaches the other12

end. The unconditional mean and variance on the other hand, both become13

zero when the starting point approaches either end of the interval, which is of14

course to be expected. A second, perhaps more noteworthy, difference is that15

while the unconditional mean and variance are reflected in the point z = a/216

as the sign of ν is changed, the conditional mean and variance are even func-17

17



tions of ν—i.e., they are symmetrical in the point ν = 0. The latter implies1

that the conditional mean and variance do not provide information about the2

sign of ν, whereas the unconditional mean and variance do. If z = a/2 then3

both unconditional and conditional mean and variance are even functions of4

ν, and neither contains information about the sign of ν. Only the proportion5

of correct responses provides information about the sign of ν in that case.6

4 Application to Parameter Estimation7

In this section we use the derived equations in a estimation procedure similar to8

the EZ method. Although the use of the equations and the technique presented9

in this section can be easily extended to more general use, for simplicity here10

we stick to the method-of-moments which is the approach of the EZ method.11

But first we give a quick overview other approaches that obtain estimators12

with statistically more desirable properties, but with the drawback of long13

computation times. As indicated earlier, there are several situations in which14

computation time becomes an issue, which include situations in which esti-15

mates per subject are desired, and situations in which different complex mod-16

els, possibly including covariates, need to be compared. A further situation17

in which computational speed is important is for instance an experimental18

procedure in which stimulus properties are adaptively changed in response to19

a participants’ performance. In such a situation (near) real-time estimation is20

necessary.21
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4.1 Chi-square, WLS, and ML estimation methods1

Several methods for estimating the parameters have been put forward (Rat-2

cliff & Tuerlinckx, 2002; Voss, Rothermund, & Voss, 2004; Vandekerckhove &3

Tuerlinckx, 2007; Wagenmakers, in press).4

Ratcliff and Tuerlinckx (2002) have extensively reviewed and evaluated three5

of these methods, namely, minimum chi-square, a weighted least squares method,6

and maximum likelihood. In the minimum chi-square method the distribution7

is binned by computing a number of quantiles from the cumulative distribu-8

tion of both correct and error responses, and fits the model by minimizing9

the (χ2-) discrepancy between observed bin frequencies and bin sizes. The10

weighted least squares (WLS) method on the other hand, directly minimizes11

the squares differences between computed quantiles and observed quantiles,12

weighted by their asymptotic accuracy. The maximum likelihood (ML) method13

used by Ratcliff and Tuerlinckx (2002) evaluates the likelihood by numerically14

differentiating the cumulative distribution function.15

Vandekerckhove and Tuerlinckx (2007) proposed a grouped data maximum16

likelihood approach to reduce the computation time necessary for full max-17

imum likelihood estimation. They also have an option to use the method of18

Brown and Heathcote (2003). Voss et al. (2004), Voss and Voss (2008) propose19

to minimize the maximum of the Kolmogorov-Smirnov statistics of correct and20

error response time distributions.21

Although ML estimators are in many cases preferred (save for cases that un-22

dermine the usual assumptions—some of which that are relevant to response23

times, are discussed by Cheng & Iles, 1987 and Heathcote & Brown, 2004),24
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Ratcliff and Tuerlinckx (2002) recommend the use of the chi-square estimator1

because in their simulations these were more robust than the outlier sensitive2

ML estimators, and more precise than WLS estimators.3

4.2 EZ estimation method4

Despite the substantial payoff of the use of the diffusion model in terms of5

interpretability of the speed and accuracy data, the methodology has failed to6

catch on in a wider audience of researchers. This may have several causes, the7

most prominent of which are probably the amount of effort a researcher needs8

to invest in devising an implementation of one of the estimation methods, and9

the computational time these methods require – even on modern computers.10

The latter becomes especially problematic when a researcher wishes to try11

different models for complex experimental designs or fit the model on a large12

group of subjects on an individual bases. For online estimation as required13

in adaptive experimental paradigms (e.g., if stimulus discriminability is to be14

equalized across subjects) these methods are impractical.15

The EZ method (Wagenmakers et al., 2007) bridges the gap by providing easily16

computable estimators for the parameters of the diffusion model. These could17

be obtained by virtue of the analytical invertability of the expressions for the18

moments derived in the previous section for the special case that z = a/2—i.e.,19

for the case that the decision is unbiased with respect to either response cat-20

egories. The EZ method furthermore ignores variability in parameters across21

trials. Thus the EZ method sacrifices some aspects of the full diffusion model22

and consequently has a more modest range of applicability. The simulations23

presented by Wagenmakers et al. (2007) show however that these method-of-24
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moments estimators perform quite well, even when either of the simplifying1

assumptions were slightly violated. The method has recently been criticized2

however (see Ratcliff, in press and Wagenmakers, van der Maas, Dolan, &3

Grasman, in press).4

A second disadvantage alluded to earlier is that the EZ method handles a5

single experimental condition at a time. Random intermixing of trials from6

different conditions however necessitates that boundary separation must be7

the same in different types of trials. The EZ method gives separate estimates8

for each condition however. This constitutes a somewhat inefficient use of the9

data.10

4.3 Easy Estimation Method for Biased Decisions11

In this section we discuss how the equations of section 3 can be used to ad-12

dress the starting point problem of EZ. Note that the problem of parameter13

constraints across conditions becomes more prominent in the biased response14

case. We therefore will have to address this problem too.15

To obtain method-of-moment estimators, we have to equate as many observed16

moments (i.e., proportions of errors, response time means and response time17

variances) to the expression of their theoretical population values of section 318

as there are unknown parameters, and then solve for the unknown parameters.19

Unlike the EZ case, analytical inversion of the method-of-moment equations20

is not possible and therefore closed form expressions for the estimators cannot21

be found. Hence we resort to a numerical algorithm. The resulting estimation22

procedure turns out to be still simple and fast enough to be computed in a web23
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page script and is straightforwardly implemented in a spreadsheet program.1

To ease the discussion we appropriately refer to this method as “EZ2”.2

We consider as an example the common situation where there are two types of3

trials in which a correct response for one type of trial is an error response for4

the other and vice versa—a lexical decision task, say. Assume that the decision5

processes associated with the two conditions (i.e., words and nonwords) share6

the starting value z and the boundary separation a, which is appropriate if7

a participant cannot determine in advance what the condition of the next8

trial is. Assume further that the decision process associated with each type9

of condition has its own drift parameter—ν0 for nonwords and ν1 for words,10

say. In addition, hypothesize that response times modeled with both types of11

processes have the same non-decision time Ter. Then there are five unknown12

parameters and we need five moment equations.13

In both the ‘word’ and the ‘nonword’ condition, the proportion of errors,14

conditional and unconditional means, and conditional and unconditional vari-15

ances can be calculated. This constitutes a total of ten observed moments.16

In order to choose an appropriate subset of moments, we have the following17

considerations. Firstly, from section 3 we know that in order to be able to18

estimate the sign of ν we have to include at least one proportion of errors19

or an unconditional moment. Secondly, to be able to estimate Ter we have20

to use at least one mean response time. In fact, the mean response time is21

not only the sole moment that provides information about Ter, it essentially22

only provides information about Ter and scarcely provides information about23

any of the other parameters. This can be seen if one considers the partition24

MRT = MDT + Ter, where MDT is the mean decision time (or mean exit25

time in diffusion terms) determined by the diffusion parameters. As long as26
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MDT is smaller than the observed mean response time, which is clearly re-1

quired, Ter will absorb any discrepancy between observed and predicted mean2

response time. Hence the observed mean response time only bounds the region3

in which the diffusion parameters must lie, and does not provide information4

about the specific values within that region. Often, furthermore, Ter is not5

of primary interest and the equations involving means then can safely be ig-6

nored (except of course for checking the condition MDT < MRT ). Finally,7

it sometimes seems reasonable to assume that error responses have a higher8

proportion of contamination and, therefore, to restrict the attention to correct9

responses. We are then left with 4 observed moments and 4 unknown param-10

eters: A variance for the correct response times for words, a variance for the11

correct response times for nonwords, a percentage of errors for the words and12

a percentage of errors for the nonwords, The non-linear system that needs to13

be solved then consists of 4 equations. The simulations presented below focus14

on this setting.15

Numerical methods to solve such nonlinear systems of equations are discussed16

in Press, Flannery, Teukolsky, and Vetterling (1993). These generally involve17

defining a non-negative potential function, whose gradient involves the system18

(e.g., a least squares function) in a way that the gradient is zero if and only if19

the system is solved. The system is then solved by finding the minimum of the20

potential function using an optimization scheme. 3 The next section demon-21

strates the ability of this procedure to produce valid parameter estimates in22

a number of numerical simulations.23

3 Note that although this may seem very similar to a least squares fit, it is in fact

not—the difference being that in order to solve the system, the minimum of the

objective function must be identically zero.
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4.4 Simulations1

The simulations follow essentially the same setup as those in Wagenmakers2

et al. (2007). Overall the simulations show that when the starting point is not3

too close to the boundary separation parameter, the EZ2 estimators perform4

well when the number of trials per condition exceeds about 250, or when the5

number of trials per condition exceeds 125 and drift rates are not very high.6

Overall it appears to be more difficult to estimate parameters when the drift7

rates are very high and when the proportions of errors are very low.8

Setup9

We simulated response times under a lexical decision task like setup. The10

values of the drift rates, boundary separation and starting point, as listed11

in Table 1. Drift rates ν1 and ν2 (for ’word’ and ’nonword’ conditions) were12

chosen such that ν1 was always strictly larger than ν2. The table also shows the13

theoretical mean response times, the percentages of errors, and the response14

time variances corresponding to these parameter values.15

For each combination of parameters, we simulated 100 data sets, with N =16

50, 250, or 1000 trials, with N/2 for each condition.17

A problem with few trials is the occurrence of perfect performance. Because18

the method only works if the proportion of errors is nonzero, we discarded19

data sets without error responses. The results below are therefore conditioned20

on the presence of error responses. Perfect performance can be dealt with as21

suggested in Wagenmakers et al. (2007). Here we did not do so, in order to22

be able to separate pure estimator bias from bias due to bias in the estimated23
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Parameters Moments

ν z a % Error MRT VRT

0.1 0.03 0.08 43.5 424.9 15827.4

0.2 0.03 0.08 27.1 404.7 11514.4

0.3 0.03 0.08 15.8 381.5 7499.4

0.1 0.05 0.08 20.8 372.8 13531.0

0.2 0.05 0.08 9.9 355.7 9532.4

0.3 0.05 0.08 4.2 337.0 5915.4

0.1 0.07 0.08 5.6 296.5 6437.5

0.2 0.07 0.08 2.1 288.7 4239.8

0.3 0.07 0.08 0.7 280.7 2420.1

0.1 0.03 0.11 49.3 594.3 52057.5

0.2 0.03 0.11 29.3 534.4 30808.8

0.3 0.03 0.11 16.4 478.1 16583.4

0.1 0.05 0.11 28.9 542.2 49761.1

0.2 0.05 0.11 12.5 485.4 28826.9

0.3 0.05 0.11 4.8 433.5 14999.4

0.1 0.07 0.11 15.3 465.9 42667.6

0.2 0.07 0.11 4.9 418.3 23534.2

0.3 0.07 0.11 1.4 377.2 11504.1

0.1 0.03 0.14 52.0 801.5 121424.9

0.2 0.03 0.14 29.9 675.9 58264.2

0.3 0.03 0.14 16.5 577.3 27069.2

0.1 0.05 0.14 32.7 749.3 119128.5

0.2 0.05 0.14 13.2 626.9 56282.2

0.3 0.05 0.14 5.0 532.7 25485.3

0.1 0.07 0.14 19.8 673.1 112035.0

0.2 0.07 0.14 5.7 559.9 50989.6

0.3 0.07 0.14 1.5 476.4 21989.9
Table 1

Parameter values used in the simulation and the corresponding mean response times

(MRT), percentages of errors (Pe), and response time variances (VRT) for the cor-

rect responses. Units of MRT and VRT in this table were rescaled and rounded to

milliseconds. Ter = 0.25 in all cases.

moments.1

We found the EZ estimates of ν, a, and Ter, together with z equal to half2
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the estimate of a, to be effective starting values. We obtained two sets of EZ1

estimates—one based on the statistics from one condition and one based on2

the statistics from the other—and used both in a separate round of fitting. We3

retained those estimates where the gradient of the potential had the smallest4

L2-norm.5
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Fig. 2. Box-and-whisker plots for the EZ2 estimates of the boundary seperation a.

The dotted line indicate the true values a = 0.08 (white boxes), a = 0.11 (light gray

boxes), and a = 0.14 (dark gray boxes).
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Estimator performance for the starting point z
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Fig. 3. Box-and-whisker plots for the EZ2 estimates of the parameter z. The dotted

line indicate the true values z = 0.03 (white boxes), z = 0.05 (light gray boxes),

and z = 0.07 (dark gray boxes).

We have explored several standard optimization algorithms; including the1

Nelder-Mead (or ‘simplex’) algorithm, the Hooke and Jeeves algorithm, and2

quasi Newton and Newton-Raphson algorithms (Hooke & Jeeves, 1961; Kaupe Jr.,3

1963; Gill, Wright, & Murray, 1986; Seber & Wild, 1989; Press et al., 1993).4

The algorithms did not differ very much, although the Hooke and Jeeves al-5
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Estimator performance for ν1
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Fig. 4. Box-and-whisker plots for the EZ2 estimates of drift rate ν1. Dotted hori-

zontal lines indicate true values of ν: ν1 = 0.1 with ν2 = 0.2 (white boxes), ν1 = 0.1

with ν2 = 0.3 (light gray boxes), and ν1 = 0.2 with ν2 = 0.3 (dark gray boxes).

gorithm seemed to be slightly more accurate than the simplex algorithm, and1

is far simpler to implement than the other algorithms.2

Although possible (e.g., Gill et al., 1986), we did not put any effort into im-3

posing any of the natural constraints on parameters (e.g., 0 < z < a). We4
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Estimator performance for drift rate ν2
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Fig. 5. Box-and-whisker plots for the EZ2 estimates of the parameter ν2. Dotted

horizontal lines indicate true values of ν: ν2 = 0.2 with ν1 = 0.1 (white boxes),

ν2 = 0.3 with ν1 = 0.1 (light gray boxes), and ν2 = 0.3 with ν1 = 0.2 (dark gray

boxes).

never encountered estimates that violated these constraints 4 , thus keeping1

4 This should not be surprising because both the variance formulas as well as the er-

ror proportion formula become negative when z is outside of (0, a), and the observed

values of course never are.
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the method simple.1

Results2

Figures 2 – 5 display the EZ2 results for the parameters a, z, ν1 and ν23

respectively in box-and-whisker plots. These estimates where based on the4

correct responses only. The results based on the pooled correct and error5

responses were very similar, and the conclusions that can be drawn from these6

simulations are essentially the same. We therefore limit the discussion to the7

results displayed in Figures 2–5. We discuss the performance of the parameter8

estimators in terms of bias below.9

Subsequent columns in the three-by-three panel array in Figure 2 indicate10

that while the boundary separation a is well recovered, as drift rate increases,11

performance deteriorates unless the number of trials is increased. The distance12

between z and a also influences the recovery of a, but any of the adverse effects13

of the distance on the estimate disappear when the number of trials is high.14

Similar conclusions hold for the starting point z. Higher drift rates also dete-15

riorate the recovery of z, as do smaller distances between starting point and16

boundary separation. The latter is especially noticeable from the top row of17

panels in Figure 3. The distribution of z estimates is also more symmetrical18

and narrower if z is more equidistant from the boundaries.19

The recovery of the drift rates is also affected by the values of the drift rates20

themselves (compare middle row panels in Figures 4 and 5), as well as by21

the distance of starting point from the boundaries (see bottom row panels of22

Figures 4 and 5). However as trial numbers increase, the bias quickly vanishes23
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in all cases.1

In conclusion, the recovery performance of these method-of-moment estima-2

tors seems to be fine, as long as sufficient numbers of trials are collected when3

drift rates are expected to be large or decision bias is strong. The key factor in4

parameter recovery performance of this estimator seems to be the proportion5

of errors that is made: the fewer errors the worse the recovery. Incidentally,6

Ratcliff and Tuerlinckx (2002) draw the same conclusion for the chi-square,7

WLS, and ML methods. Bearing these results in mind, we apply this method8

to data from an actual experiment in the next section.9

4.5 Application to Lexical Decision Data10

For illustration purposes, we apply the EZ2 methods to empirical data. The11

complete task is described in Wagenmakers, Ratcliff, Gomez, and McKoon12

(2008); here we only summarize the important features. The response time13

data were collected from 19 university students who participated in a lex-14

ical decision task with 75% nonwords and 25% words, and word frequency15

was varied from ‘very low’ to ‘low’ to ‘high’. The word-nonword imbalance16

presumably biases participants towards the nonword boundary, whereas the17

word frequency should affect drift rate for words but not for nonwords—that is,18

higher frequency words are presumably stronger represented in memory and19

hence their drift rate should be higher. The nonwords consisted of pseudo-20

words that were generated by changing the vowels of existing high frequency,21

low frequency, and very low frequency words. Because ‘very low’, ‘low’, and22

‘high’ frequency words were randomly intermixed, the bias should not be af-23

fected by word frequency, and neither should boundary separation and non-24
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word drift rate. Two of the participants showed perfect performance in one of1

the conditions. Although this can be dealt with using the method suggested2

in Wagenmakers et al. (2008), since we only mean to illustrate the use of the3

method, we simply discarded these two cases from the analysis. In Wagen-4

makers et al. (2008), the data were judged to conform the diffusion model5

characteristics so that application of the EZ2 method is warranted, although6

not entirely correct, as across trial variation is ignored. Individual variances7

(of correct responses only) and percentages of errors of 17 participants were8

fitted to a model in which the lower boundary corresponded to a word response9

and the upper boundary to a nonword response. The word and nonword re-10

sponses from different word frequencies were fitted separately, so that for each11

word frequency condition we obtained a boundary separation (a), a starting12

point (z), a drift rate for words (ν1) and a drift rate for nonwords (ν0). The13

means of the parameter estimates across participants are given in Table 2,14

along with their standard errors in parentheses. A multivariate repeated mea-15

sures omnibus Hotelling’s T 2 test revealed significant differences in parameter16

vectors for the different word frequencies (F (8, 9) = 5.144, p = .0122). Post17

hoc these could only be attributed to differences between very low and high18

frequency words (F (4, 13) = 12.51, p = .0008) and between low and high fre-19

quency words (F (4, 13) = 7.509, p = .0023), but not between very low and20

low frequency words (F (4, 13) = .404, p = .316). Subsequent t-tests revealed21

significant differences only for the word drift rates (ν1) between low and high22

word frequencies (t(16) = 3.259, p = .005) and between very low and high23

word frequencies (t(16) = 5.731, p = .00003).24

Note that these results are conform the expectations, except perhaps for the25

lack of the anticipated difference between the word drift rates in the very low26
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word frequency ν0 ν1 z a

very low .177 (.018) .195 (.028) .1013 (.0069) .149 (.0083)

low .168 (.012) .252 (.022) .1034 (.0064) .143 (.0073)

high .186 (.013) .362 (.028) .0939 (.0054) .141 (.0075)

Table 2

Parameter estimates from fits to variances of correct responses and error percentages

in the lexical decision task. Standard errors as determined from across participant

variance are indicated between parentheses. Only the differences in words drift rate

ν1 between low frequency words condition and the high frequency words condition,

and between very low frequency words condition and the high frequency words

condition are statistically significant.

word frequency and the low frequency conditions. The latter however may1

to be due to a lack of power rather than due to an absence of the expected2

difference. Note furthermore that the drift rate for nonwords is close to the drift3

rate for very low frequency words 5 , which seems quite reasonable theoretically4

for the pseudo-words used if drift rate is indicative of the quality of the memory5

representation for the item. In addition, the starting point z is closer to a, the6

nonword boundary, indicating a clear bias towards nonword responses as to7

be expected from the nonword/word ratios.8

Because we only used correct responses for the parameter estimation we may9

have lost information that will enable us to detect the word drift rate differ-10

ence between the very low and low word frequencies conditions. We repeated11

5 A pairwise comparison did not detect a significant difference between ν1 and ν0

for the very low word frequencies whereas it did for the low and high frequency

words.
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word frequency ν0 ν1 z a

very low .172 (.014) .188 (.025) .1049 (.0065) .150 (.0077)

low .166 (.010) .259 (.023) .1068 (.0069) .148 (.0084)

high .183 (.011) .352 (.027) .0945 (.0054) .143 (.0077)

Table 3

Parameters estimates from fits to variances of the pooled correct and error responses

and error percentages in the lexical decision task. Standard errors as determined

from across participant variance are indicated between parentheses. The differences

between the values of ν1 are all significant. Differences between conditions for other

parameters are all non-significant.

the analysis on parameter estimates that were obtained from fitting the per-1

centages of errors and variances computed over the pooled error and correct2

responses. The means of the estimates are tabulated in Table 3. Using response3

times variances of pooled error and correct responses instead of using only cor-4

rect responses hardly affects the estimates and their standard errors 6 , except5

for a slightly diminished mean estimated value of ν1 in the very low frequency6

words condition (i.e., .188 vs. .195). The statistical analysis of these estimates7

led to the same results as previously, except that in this case an additional8

marginal difference was detected in ν1 between low frequency words and very9

low frequency words which is caused by a somewhat more pronounced dif-10

ference between the low word frequencies condition and the very low word11

frequencies condition.12

In Wagenmakers et al. (2008) the chi-square method was used to fit the full13

diffusion model to the .1, .3, .5, .7, .9 quantiles that were averaged across par-14

6 correlations between parameter estimates all > .9; for z and a all > .96
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ticipants. In the fit of the model in that paper, parameters were constraint1

to fit an additional condition with 75% words and 25% nonwords (the oppo-2

site of the data analyzed here). The estimates are tabulated in Table 4 for3

comparison.4

Qualitatively, the difference between estimates is not very large. The estimated5

drift rates for very low frequency and low frequency are very close, but the6

full diffusion model drift rate for high frequency words is a bit more sizable7

than the EZ2 estimate. Also, the full diffusion model drift rate for the non-8

words is more sizable than the EZ2 estimate, and the EZ2 estimates of z and9

a are larger than the full diffusion model estimates. However, the EZ2 non-10

word drift rates estimates do not seem unreasonable from a theoretical point11

of view when compared to the very low frequency drift rate estimate. Also,12

while the EZ2 estimates of z and a are both larger than their full diffusion13

model counterparts, the ratio between the starting point and the boundary14

separation estimates, z/a, are similar for both methods: z/a = .669 for the15

full diffusion model estimates, while this ratio is .699, .722 and .661 for the16

EZ2 estimates in respectively, the high, low, and very low word frequencies17

conditions. Furthermore, the EZ2 estimates of a are close to the full diffusion18

model estimate in the 75% word condition for which it was .13 (not given19

in the Table). In understanding the differences, it should be kept in mind20

that Tables 2 and 3 were produced by averaging parameter estimates across21

participants, whereas Table 4 was produced by deriving the estimates of the22

full diffusion model from quantiles averages, which may partly explain the ob-23

served differences. Other major causes for the differences are the inclusion of24

data of a 75% words condition in the full diffusion model fit, and the equality25

restrictions on starting points, boundary separations and the nonwords drift26
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word frequency ν0 ν1 z a

very low .252 .169 .079 .118

low - .260 - -

high - .476 - -

Table 4

Parameter estimates from chi-square fits of the full diffusion model to participant

averaged quantiles in two conditions (75% nonwords vs. 25% words and 25% non-

words vs. 75% words). Parameters were constraint across these two conditions. Only

the estimates for the 75% nonword condition are reproduced here. A hyphen indi-

cates that the parameter value was constraint to be identical to the one in the row

above. Because participant averaged quantiles were used, no sample standard errors

were given. No estimate standard errors were calculated.

rates in the latter fit. Note that, unlike the method-of-moments estimation1

paradigm adopted here and throughout this paper, a least squares estimation2

framework would be able to address all of these differences. Exploring these3

possibilities is beyond the scope of the this paper however (see the discussion4

section for more detailed remarks on this issue).5

All in all, the results show that for as far as the EZ2 parameters are concerned,6

conclusions that may drawn from the averaged EZ2 estimates pretty much7

confer to the conclusions that may be drawn from a full diffusion model fit to8

participant averaged data in this example.9
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4.5.1 Computational Speed1

As indicated before the algorithm above is faster than any of the currently2

available estimation algorithms. For comparison we computed estimates for3

the data described above again with fast-dm (Voss et al., 2004; Voss & Voss,4

2008) under the same model as the EZ2 method estimates in Tables 2 and5

3, and registered the computation time. Although it is difficult to compare6

computation times taken by fast-dm and EZ2 because fast-dm is implemented7

in C while the implementation of EZ2 we used to estimate this time is in a web8

page using javascript, the speed difference is quite substantial: To compute9

Table 2 fast-dm took a total of about 6 minutes while the EZ2 web page10

implementation took a total of about 6 seconds. 7 It should be mentioned11

however that fast-dm always fits the model three times from different starting12

values, while this is not the case for the EZ2 method implementation we used13

for timing.14

5 Discussion15

The aim of the present paper was to derive closed form expressions for the first16

two central moments of response time distributions predicted from Ratcliff’s17

diffusion model under less restrictive assumptions than the ones made in Wa-18

genmakers et al. (2005), and to consider their use for estimation purposes. In19

particular, we demonstrated how they can be used in a vein similar to the EZ20

7 Timing was done on a 2.33 GHz Intel Mac running Mac OS X Tiger. Fast-dm-29

sources were downloaded from http://seehuhn.de/pages/fast-dm. The web page

implementation of EZ2 was run in the Safari 3.1 web browser. Note that this is the

fastest browser we have tested.
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method (Wagenmakers et al., 2007) to obtain method-of-moment estimators.1

Although we demonstrated the effectiveness of using the expression in esti-2

mation, we do not wish to suggest that this procedure can be considered as a3

complete substitute for an analysis with the full diffusion model. The assump-4

tions made for deriving the expressions constitute a drastic simplification of5

the full model. One of these assumptions can be easily repaired (it should be6

straightforward to include a non-decision time range component sT ), but oth-7

ers are not so easily removed. The method may however be considered valid8

for a somewhat more coarse level of analysis.9

As is true for the EZ method, since both methods provide method-of-moments10

estimators and the first two central moments are not sufficient statistics for11

response time distributions, these estimators should be expected to be less12

precise than for instance maximum likelihood estimators. This is a disadvan-13

tage that is to be weighted against the advantage of a substantially reduced14

computation times. The simulations demonstrate that their sampling errors15

do not overshadow their usefulness.16

Note that the use of the expressions for estimation purposes is not limited to17

method-of-moment estimation. They can be straightforwardly used in a least18

squares procedure that fits diffusions used as building blocks to model decisions19

in different experimental conditions to the observed moments. This is similar20

to covariance structure modeling as used, e.g., in linear structural relations21

modeling (e.g., LISREL, see Jöreskog, 1981; Bollen, 1989). The straightfor-22

ward method is ordinary least squares (OLS) estimation with more equations23

than unknown parameters. OLS is however, generally dominated by its cousin24

generalized least squares (GLS) estimation (e.g., Browne, 1974, 1984) or gen-25
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eralized minimum chi-square estimation (Ferguson, 1996, chap. 23), in which1

squared differences between modeled and observed moments are weighted in2

accordance with their precision. GLS may result in asymptotically efficient3

(i.e., maximum likelihood equivalent or best asymptotic normal (BAN)) esti-4

mators (Browne, 1974, 1984). Such an approach could be viable in the current5

case: An estimate of the covariance matrix from which the precision can be6

calculated can be obtained by bootstrapping the mean and the variance of7

the response times if only correct responses are used, and the error rate, and8

mean and variance of the response times if pooled error and correct responses9

are used.10

Recently, Ratcliff and Tuerlinckx (2002) point out the importance of con-11

taminant response times. They showed in their simulations that outliers and12

contaminant responses in general can have important effects on parameter es-13

timates, and therefore propose to fit a mixture model in which the proportion14

of contaminants is estimated in addition to the other model parameters. It is15

not entirely straightforward perhaps to include a ‘proportion of contaminants’16

parameter in the estimation procedure, although not entirely impossible. 8
17

8 One could modify the equations for the variance to (1 − ρ)V RT + ρ σc + ρ (1 −

ρ) (MRT−µc)2, where ρ would indicate the proportion of contaminants, and µc and

σc their mean and variance. This introduces 3 extra parameters and can only be es-

timated if 3 more equations are available. This can be realized if multiple conditions

are analyzed in which these parameters are assumed to be constant. If µc and σc

are functionally dependent, as for instance is the case if a chi-square distribution is

assumed for the contaminants for instance, then the number of extra parameters can

be reduced by one parameter. Alternatively, as an anonymous reviewer pointed out,

if the approach of (Ratcliff & Tuerlinckx, 2002) is used, one could assume that the

contaminants have a uniform distribution across the range from the lowest observed

39



Alternatively, one can try to find more robust estimators of the mean and1

variance. Such estimators for skewed distribution are available (e.g., Wang &2

Raftery, 2002). Likewise, the expressions for the decision time variance can be3

augmented with a variance of the non-decision component that we have ig-4

nored all along. It remains to be evaluated if such additions are advantageous.5

The currently explored estimation use of the expressions for response time6

mean and variance thus leaves room for future improvement—both in terms7

of (relatively straightforward) generalizations to handling contaminants and8

non-decision time variability, as well as in terms of more complex generaliza-9

tions to handling a complicated experimental designs with multiple factors,10

fit assessment and model selection.11
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A Second moment of decision time of error responses1

In this appendix we derive the second order moment of the exit time of the er-2

ror responses. We solve equation (10) by variation of parameters (e.g., Apostol,3

1969; Kreyszig, 1993). In (10), write y(z) = πa(z)T2(z, 0), the general solution4

to the homogeneous equation associated with (10) is5

C1 + C2 e
−2νz/s2 ,

so that {y1, y2} = {1, e−2νz/s2} is a linear basis for the solutions of the homo-6

geneous problem. The Wronskian of this basis is7

W = y1 ∂zy2 − y2 ∂zy1 = −2ν

s2
e−2 ν z/s2

A particular solution, yp, is given by8

yp = −y1

∫ −2 y2 π0 T1

W
dz + y2

∫ −2 y1 π0 T1

W
dz

Maple evaluates the integrals to unpleasant lengthy expressions involving9

higher transcendental functions, but tedious derivations show that they can10

be brought down to expressions involving only exponentials. Denote φ(x) =11

e2ν x/s
2
, the particular solution can be written12
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yp =
1

2

φ(−z)

ν4 (φ(a)− 1)2

(
(2 z ν s2 − s4 − 8φ(a) a ν2 z − 2 z2 ν2) φ(z)

+ (2 ν2z2 + 2νzs2 − 8aν2z − 4νas2 + s4) φ(a) + (−2 νzs2 − 2ν2z2 − s4) φ(2a)

+ (2ν2z2 + 4νas2 + s4 − 2νzs2) φ(x+ a)
)
.

The general solution to (10) then is1

y = yp + C1 + C2 e
−2νz/s2 .

The coefficients C1 and C2 are solved for by imposing the side conditions2

(11), and are substituted back into the solution. Dividing y by πa(z) yields3

an expression for the second order moment T2(z, 0) which we do not give4

here. Instead, we gave the variance in (14), which results from subtracting the5

square of equation (13).6

B Estimation Software7

We provide several pointers to software implementations of the estimation8

procedure of the EZ2 diffusion model:9

B.1 Web Application10

A web application that can be used directly, can be found at http://purl.11

oclc.org/net/rgrasman/jscript/ez2. The application allows users to spec-12

ify a model for complex experimental designs involving several EZ2-diffusions13
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with separate and or shared parameters. To this end, the user i) creates a set1

of parameters, ii) chooses a multiple of the non-linear equations in (5), (6),2

(13), and (14) (i.e., one equation corresponding to each observed percentage3

of errors, response time variance and/or mean response time), iii) specifies the4

corresponding observed values, and iv) indicates on which parameters each5

equation depends. The user can then specify starting values, or use EZ esti-6

mators, and presses the ’solve’ button to find the estimates. The application7

can be used both for finding method-of-moment estimators (the number of8

non-linear equations equals the number of unknown parameters) or for (or-9

dinary) least squares estimation (the number of nonlinear equations exceeds10

the number of unknowns). The application also provides batch estimation11

functionality.12

Note that the application is written in Javascript (ECMAScript) and DHTML.13

Javascript is clearly not intended for heavy numerical computations, yet the14

application is sufficiently fast to gain some first hands-on experience with15

modeling this way. Performance speed varies considerably across browsers.16

Notably Firefox (versions 1.5, 2.0 and 3.0, tested on a Windows XP machine)17

seems to be a bit slow. Microsoft’s Internet Explorer (IE6 & IE7 on Windows18

platform) is appreciably faster, as are Opera 9.0 and Safari 3.0/3.1 (both for19

Mac OS X & Windows).20

B.2 Estimation in an Excel Sheet21

An example Excel sheet, including a tutorial can be found at http://purl.22

oclc.org/net/rgrasman/excel/ez2.23
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B.3 R Routines1

An R packages with non user-friendly R routines, including documentation,2

can be downloaded from http://purl.oclc.org/net/rgrasman/r/ez2 .3
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